facebook-icon twitter-icon youtube-icon

Moc czynna, moc bierna, moc pozorna, współczynnik mocy

Moc czynna, moc bierna, moc pozorna, współczynnik mocy

 

Zanim wytłumaczę co to jest moc czynna, bierna i pozorna to najpierw musisz wiedzieć co nieco na temat rezystora, kondensatora i cewki, ponieważ to właśnie z tymi elementami są związane wyżej wymienione moce.

Rezystor ma na celu wymianę energii elektrycznej w ciepło.

Cewka ma na celu gromadzenie pola magnetycznego.

Kondensator gromadzi energię elektryczną.

Każdy z wyżej wymienionych elementów generuje jakiś opór. Ten opór można przedstawić w układzie współrzędnych (oś X i oś Y). Poniżej przestawiłem grafikę to pokazującą. Przyjęło się, że opór od rezystora przedstawia się na osi X podając jakieś konkretne wartości np. 5 Ω, 150 Ω itd. Skoro oś X jest zarezerwowana do rezystorów to oczywistym jest, że oś Y (oś liczb urojonych) musi być zarezerwowana do cewki i kondensatora. „Oporność” elementów urojonych, czyli cewki i kondensatora nazywa się reaktancją. W przypadku dodatniej części reaktancji nazywa się ją induktancją XL=w*L, natomiast w przypadku ujemnej osi urojonej mamy do czynienia z kapacytancją Xc=-1/w*C. Jeśli natomiast w naszym układzie mamy elementy rzeczywiste, czyli rezystory i elementy urojone, czyli cewki albo kondensatory to „oporność” takiego układu nazywa się impedancją ( patrz na grafikę poniżej).

Oczywistym jest że każdy z tych elementów może generować moc. W przypadku rezystora to tutaj sprawa jest prosta do wyobrażenia bo rezystor generuje ciepło wiec w jego przypadku mamy do czynienia z mocą cieplną. Pozostałe elementy czyli kondensator i cewka one również generują moc. Można to przedstawić na wykresie tak samo jak „oporności”. Moc elementów rzeczywisty czy czyli rezystorów będziemy przestawiać na osi X, natomiast kondensatora i cewki na osi urojonej (oś Y).

Moc czynna

Moc czynną czyli moc na rezystorze można obliczyć z poniższego wzoru:

P=U*I*cosφ [W]

Do powyższego wzoru wprowadza się napięcie i natężenie skuteczne. Kąt φ to kąt przesunięcia fazowego między napięciem i natężeniem.

Moc czynną można też obliczyć z innego wzoru a mianowicie można wymnożyć rezystancję razy natężenie skuteczne podniesione do kwadratu.

P=R*I2

Moc bierna

Moc bierną można obliczyć korzystając z Poniższego wzoru:

Q=U*I*cosφ [Var]

Jak widzisz wygląda on dokładnie tak samo jak na moc czynną z tą różnicą, że w mocy czynnej mieliśmy kosinusa natomiast w mocy biernej mamy sinusa.

Tak samo jak w mocy czynnej moc bierną również można obliczyć w dwóch wersjach. Moc czynna odnosi się do rezystorów i w tej drugiej wersji można było ją obliczyć mnożąc rezystancję z z natężeniem skutecznym. W mocy biernej można zrobić to dokładnie tak samo z tą różnicą że w miejscu rezystancji musimy wstawić reaktancję cewki lub kondensatora (w zależności z czym będziemy mieli do czynienia). Wzór wygląda jak poniżej:

Q=X*I2

Moc pozorna

Jeśli chodzi o moce to nie wszystko. Mamy oczywiście moc czynną i bierną ale oprócz tego jest jeszcze coś takiego jak moc pozorna. Moc pozorna pojawia się w układach w których mamy elementy rzeczywiste czyli rezystory i elementy urojone czyli cewki i kondensatory. Taki układ złożony z wyżej wymienionych elementów generuje moc która jest sumą mocy czynnej i mocy biernej i ma to swoją oddzielną nazwę nazywa się to mocą pozorną. Jednostką mocy pozornej jest wolto amper [VA]. Już sama jednostka nam podpowiada w jaki sposób można obliczyć moc pozorną. Wystarczy wymnożyć ze sobą napięcie skuteczne które podajemy przecież w woltach z natężeniem skutecznym prądu, które podajemy w amperach.

S=U*I

Tak samo jak dwa wcześniejsze wzory mogliśmy obliczyć na 2 sposoby tak samo i tym razem. Jedyna różnica jest taka że w miejscu w którym mamy „oporność” tym razem w przypadku mocy pozornej musimy wstawić impedancję

S=Z*I2

Moc pozorna zespolona

W na zajęciach najczęściej będziesz operował prądem przemiennym. Obliczenia na prądzie przemiennym najlepiej prowadzić na liczbach zespolonych. Żeby obliczyć moc pozorną zespoloną to wystarczy znać napięcie skuteczne zespolone i wymnożyć to ze sprzężonym, skutecznym natężeniem prądy.

S=U*I*

Jak wykonasz takie obliczeniach na liczbach zespolonych i sprowadzisz wynik do postaci algebraicznej zapisu to otrzymasz, że wynik musi składać się z dwóch członów. Pierwszy będzie liczbą rzeczywistą a drugi będzie liczbą urojoną.

S=P+jQ

Dzięki takiemu zapisowi od razu można ustalić ile jest równa w danym układzie moc czynna a ile jest równa moc bierna. Bardzo przydatne narzędzie :)

Graficznie można to przedstawić w następujący sposób:

Mając już wiedzę o różnego rodzaju mocach. Myślę ze warto policzyć zadanie żeby to przećwiczyć.

Treść zadania: W pewnym obwodzie elektrycznym panuje napięcie skuteczne 230V. W obwodzie wydziela się moc czynna 400W oraz płynie tam prąd o wartości skutecznej 2,5A. Oblicz przesunięcie fazowe oraz amplitudę napięcia i natężenia.

Z treści zadania znamy wartość mocy czynnej, dlatego od razu przypomnijmy sobie wzór na moc czynną

P=U*I*cosφ=R*I2 [W]

P=Re{S} [W]

W tym zadaniu jednym z poleceń jest napisane że mamy obliczyć kąt przesunięcia fazowego między napięciem i natężeniem. We współczynniku mocy czyli w elemencie cosφ mamy kąt między napięciem a natężeniem. Tak że na pewno ten pierwszy wzór nam się przyda. Wszystko w nim znamy bo moc czynną znamy z treści zadania, napięcie i natężenie skuteczne również. Poniżej podstawiłem dane i otrzymałem kąt.

Druga część zadania jest jeszcze łatwiejsza. Mamy obliczyć amplitudę napięcia i natężenia. Amplituda czyli inaczej wartość maksymalna. Jak to można obliczyć? Jeśli masz do czynienia z przebiegiem sinusoidalnym to wystarczy wymnożyć wartość skuteczną przez pierwiastek z 2 i po sprawie. Gdybyśmy mieli do czynienia z przebiegiem trójkątnym to trzeba byłoby to wymnożyć razy pierwiastek z 3.

To zadanie znajdziesz na moim YouTube. Poniżej przesyłam link

https://www.youtube.com/watch?v=2-unlbX4yRc&t=4s

Zapraszam również do mojego kursy online z Podstaw elektrotechniki i teorii obwodów.

 


Powiązane wpisy:


Kategoria: PRAWA FIZYCZNE

Dodaj komentarz

Brak komentarzy do tego wpisu.